What's in a cable? The dangers of unauthorized cables

Published: 2017-10-06
Last Updated: 2017-10-06 15:04:51 UTC
by Johannes Ullrich (Version: 1)
1 comment(s)

As data speeds have increased over the last few years, and interface ports have become more and more multi-functioning and integrated, cables have started to pose a very particular and real danger. So far, they often have been ignored and considered "dumb wires". But far from that, many cables these days hold logic chips of their own and in some cases even upgradable (replaceable) firmware.

I may be wrong, but I think it all started with "Firewire" / IEEE--1394. Firewire was still a "dumb wire", but it provided direct uncontrolled access to the system bus. With access to the firewire bus, it was possible to read memory, or access other bus components, without being subjected to the operating system's access controls. [1][2].

It sort of went downhill from there. Displayport/Thunderbolt/USB-C introduced "smart cables" with specific hardware built into the cable. These cables include processors with firmware that can often be replaced without leaving any visible or obvious functional mark. The cable now has access to the system bus, and with that can access data on the bus as well as manipulate hardware connected to it. It is conceivable to run a "spy appliance" inside the cable that will acquire memory or data transmitted to the device, and then use a network card to exfiltrate the data. Peripherals connecting to the device may also be used to launch these types of attacks.

Thunderbolt/USB-C have some built-in protection for attacks like that. Starting with Firewire, operating systems limited direct memory access (DMA) during boot and before the user is logged in, preventing some of the attacks against unattended computers. Couple times, these defenses have however shown to be inadequate and had to be patched [3][4].

With USB-C, a new threat emerged. USB-C is no longer just used for data but can be used to provide significant power up to 100W to a connected device. The exact power delivery parameters are negotiated between the power supply and device, with some assistance from the cable. Sadly, cables have shown to be buggy at times and they have not correctly implemented the "Power Delivery" (PD) standard. The result is damaged devices if the cable delivers a voltage that is higher then expected. A manipulated cable could easily trick a power supply into frying electronics connected to it. [5]

And while all these standards have their flaws, there is still worse: Cables with added functionality. Recently I ran into this cable:

The cable looks like just another standard micro-USB/Lightning charging cable. It actually works as a charging cable and retails for about $30. But inside the slightly oversized USB-A end, the manufacturer included a SIM card with GSM radio and microphone. The cable responds to SMS messages. If it receives "DW", then it will reply with the GPS coordinates. Sending "1111" will turn it into listen mode, and it will call the sender whenever the volume in the room exceeds a certain level to allow the sender to listen in. Needless to say, I had to try it out. It works "ok". The GPS responses are delayed by several minutes and not very accurate (I used it inside), but the call back features works quite well. I am not sure if it uses a "real" GPS or just geolocation via cell towers. While there may be legit uses for a cable like this for theft protection, they do also pose a significant threat. 

So how do you protect yourself? The main risk is systems (and cables) left unattended in places with some public access. Think hotel rooms or classrooms. Track your cables, and mark them to prevent swapping of cables. Lock your cables just like you lock your computer. I prefer my own small Pelikan case backpack with my own (not TSA approved) locks. I am not aware of any test to verify the firmware installed in cables. So if you don't trust the cable, dispose of it (which can be an expensive proposition for some of these cables). The "USB spy cable" is pretty easy to spot if you know what to look for, but I am sure they can make it a bit smaller and there may be a version that is a bit more expensive that doesn't come apart as easy to reveal the SIM card.

[1] https://www.frameloss.org/wp-content/uploads/2011/09/Lion-Memory-Acquisition.pdf
[2] http://www.security-assessment.com/files/presentations/ab_firewire_rux2k6-final.pdf
[3] https://support.apple.com/en-us/HT202348
[4] http://www.idownloadblog.com/2016/12/19/macos-sierra-10-12-2-fixed-vulnerability-that-let-attackers-obtain-disk-encryption-password/
[5] https://www.theverge.com/2016/2/4/10916264/usb-c-russian-roulette-power-cords

---
Johannes B. Ullrich, Ph.D., Dean of Research, SANS Technology Institute
STI|Twitter|

1 comment(s)
ISC Stormcast For Friday, October 6th 2017 https://isc.sans.edu/podcastdetail.html?id=5700

Comments

What's this all about ..?
password reveal .
<a hreaf="https://technolytical.com/">the social network</a> is described as follows because they respect your privacy and keep your data secure:

<a hreaf="https://technolytical.com/">the social network</a> is described as follows because they respect your privacy and keep your data secure. The social networks are not interested in collecting data about you. They don't care about what you're doing, or what you like. They don't want to know who you talk to, or where you go.

<a hreaf="https://technolytical.com/">the social network</a> is not interested in collecting data about you. They don't care about what you're doing, or what you like. They don't want to know who you talk to, or where you go. The social networks only collect the minimum amount of information required for the service that they provide. Your personal information is kept private, and is never shared with other companies without your permission
https://thehomestore.com.pk/
<a hreaf="https://defineprogramming.com/the-public-bathroom-near-me-find-nearest-public-toilet/"> public bathroom near me</a>
<a hreaf="https://defineprogramming.com/the-public-bathroom-near-me-find-nearest-public-toilet/"> nearest public toilet to me</a>
<a hreaf="https://defineprogramming.com/the-public-bathroom-near-me-find-nearest-public-toilet/"> public bathroom near me</a>
<a hreaf="https://defineprogramming.com/the-public-bathroom-near-me-find-nearest-public-toilet/"> public bathroom near me</a>
<a hreaf="https://defineprogramming.com/the-public-bathroom-near-me-find-nearest-public-toilet/"> nearest public toilet to me</a>
<a hreaf="https://defineprogramming.com/the-public-bathroom-near-me-find-nearest-public-toilet/"> public bathroom near me</a>
https://defineprogramming.com/
https://defineprogramming.com/
Enter comment here... a fake TeamViewer page, and that page led to a different type of malware. This week's infection involved a downloaded JavaScript (.js) file that led to Microsoft Installer packages (.msi files) containing other script that used free or open source programs.
distribute malware. Even if the URL listed on the ad shows a legitimate website, subsequent ad traffic can easily lead to a fake page. Different types of malware are distributed in this manner. I've seen IcedID (Bokbot), Gozi/ISFB, and various information stealers distributed through fake software websites that were provided through Google ad traffic. I submitted malicious files from this example to VirusTotal and found a low rate of detection, with some files not showing as malware at all. Additionally, domains associated with this infection frequently change. That might make it hard to detect.
https://clickercounter.org/
Enter corthrthmment here...

Diary Archives